Classification of Microcalcification Clusters via PSO-KNN Heuristic Parameter Selection and GLCM Features

نویسندگان

  • Imad Zyout
  • Ikhlas Abdel-Qader
چکیده

Texture-based computer-aided diagnosis (CADx) of microcalcification clusters is more robust than the state-of-art shape-based CADx because the performance of shape-based approach heavily depends on the effectiveness of microcalcification (MC) segmentation. This paper presents a texture-based CADx that consists of two stages. The first one characterizes MC clusters using texture features from gray-level co-occurrence matrix (GLCM). In the second stage, an embedded feature selection based on particle swarm optimization and a knearest neighbor (KNN) classifier, called PSO-KNN, is applied to simultaneously determine the most discriminative GLCM features and to find the best k value for a KNN classifier. Testing the proposed CADx using 25 MC clusters from mini-MIAS dataset produced classification accuracy of 88% that obtained using 2 GLCM features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Mc Clusters in Digital Mammography via Haralick Descriptors and Heuristic Embedded Feature Selection Method

Characterizing the texture of mammographic tissue is an efficient and robust tool for the diagnosis of microcalcification (MC) clusters in mammography because it does not require a prior MC segmentation stage. This work is not only intended to validate MCs’ surrounding tissue hypothesis that reveals the potential of breast tissue surrounding MCs to diagnose microcalcifications, but to present a...

متن کامل

Classification of Clustered Microcalcifications in Mammograms using Particle Swarm Optimization and Least-Squares Support Vector Machine

Feature selection and classifier hyper-parameter optimization are important stages of any computer-aided diagnosis (CADx) system for mammography. The optimal selection for shape features, kernel parameter, and classifier regularization constant is crucial to achieve a good generalization and performance of least-squares support vector machines (LSSVMs). This paper presents a morphology-based CA...

متن کامل

A Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection

K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...

متن کامل

Improving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA

With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...

متن کامل

Feature Selection in Structural Health Monitoring Big Data Using a Meta-Heuristic Optimization Algorithm

This paper focuses on the processing of structural health monitoring (SHM) big data. Extracted features of a  structure are reduced using an optimization algorithm to find a minimal subset of salient features by removing noisy, irrelevant and redundant data. The PSO-Harmony algorithm is introduced for feature selection to enhance the capability of the proposed method for processing the  measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011